The Computer Laboratory

Practice Paper 3 Question 7

Let \(a_n, b_n\) be sequences of positive real numbers which satisfy \(a_0 = b_0\) and the recursive matrix relation \(\big(\begin{smallmatrix}a_n \\b_n\end{smallmatrix}\big)=\big(\begin{smallmatrix} 1 & y \\0 & 1\end{smallmatrix}\big)\big(\begin{smallmatrix}a_{n-1} \\b_{n-1}\end{smallmatrix}\big).\) What is the simplest non-recursive form of the ratio \(\frac{b_n}{a_n}?\)

The above links are provided as is. They are not affiliated with the Climb Foundation unless otherwise specified.

Hints

  • Hint 1
    Evaluate \(\big(\begin{smallmatrix}1 & y \\0 & 1\end{smallmatrix}\big)\big(\begin{smallmatrix}u \\v\end{smallmatrix}\big).\)
  • Hint 2
    Try to express the relationship between \(\big(\begin{smallmatrix}a_n \\ b_n\end{smallmatrix}\big)\) and \(\big(\begin{smallmatrix}a_0 \\ b_0\end{smallmatrix}\big)\) as a non-recursive matrix equation.
  • Hint 3
    Simplify \({\big(\begin{smallmatrix}1 & y \\0 & 1\end{smallmatrix}\big)}^n,\) by trying small values of \(n\) or otherwise.

Solution

We can unwind this matrix recurrence in the same way as a regular recurrence, \(\big(\begin{smallmatrix} a_n \\ b_n \end{smallmatrix}\big) = \big(\begin{smallmatrix} 1 & y \\ 0 & 1 \end{smallmatrix}\big) \big(\begin{smallmatrix} a_{n-1} \\ b_{n-1} \end{smallmatrix}\big)\) \(={\big(\begin{smallmatrix} 1 & y \\ 0 & 1 \end{smallmatrix}\big)}^2 \big(\begin{smallmatrix} a_{n-2} \\ b_{n-2} \end{smallmatrix}\big)\) \(=\ldots=\) \({\big(\begin{smallmatrix} 1 & y \\ 0 & 1 \end{smallmatrix}\big)}^n \big(\begin{smallmatrix} a_{0} \\ b_{0} \end{smallmatrix}\big).\) Using induction, we can show that \({\big(\begin{smallmatrix} 1 & y \\ 0 & 1 \end{smallmatrix}\big)}^n\) \(={\big(\begin{smallmatrix} 1 & ny \\ 0 & 1 \end{smallmatrix}\big)}.\) Hence, \(\big(\begin{smallmatrix} a_n \\ b_n \end{smallmatrix}\big)\) \(={\big(\begin{smallmatrix} 1 & ny \\ 0 & 1 \end{smallmatrix}\big)} \big(\begin{smallmatrix} a_{0} \\ b_{0} \end{smallmatrix}\big)\) \(=\big(\begin{smallmatrix} a_{0} + nyb_{0} \\ b_{0} \end{smallmatrix}\big).\) Therefore the ratio \(\frac{b_n}{a_n}\) is \(\frac{b_0}{a_0 + nyb_0} = \frac{1}{1+ny}.\)

If you have queries or suggestions about the content on this page or the CSAT Practice Platform then you can write to us at oi.footasc@sulp.ecitcarp. Please do not write to this address regarding general admissions or course queries.